パターン認識
識別,分類,変換等のパターン処理技法を学修する.
- パターン認識の種類
- パターン認識に必要なデータの準備
- 特徴抽出によるパターン認識
- 最近の(最新の)パターン認識 LDA編
- 医用画像
- パーセプトロン
- ニューラルネットワーク
- 誤差逆伝播法
- 学習のテクニックと畳み込みニューラルネットワーク
- 自己符号化器の異常検知への適用
- 再帰型ネットワークによる時系列モデル
- 注意機構による対応付けの学習
機械学習
機械学習の理論を講義形式で学び,回帰や分類等の典型的な問題に対する機械学習,ディープラーニングにおけるネットワーク表現のバリエーション,入力・出力情報の表現方法など,ディープラーニングを用いるために考慮すべき点を演習を通じて学ぶ.
- 機械学習とデータの扱い
- 教師あり学習
- 教師なし学習
- 深層学習
- 強化学習
データツール
データ解析ツールの先端的な利用スキルを学修する.
- MATLAB
- Linux
- Python
- Android
- OpenCV
- R
- MySQL
- Unity
- SAS
- Java
ツールの整理学
データサイエンスに関するツールは大きく,データ管理,データ操作,データ分析,可視化に分類できる.本講義では,それぞれの代表的なツールとして以下のツールを紹介する
- SQLite + Pandas:
関係データベース(SQL データベース)のSQLite とPandas を連携して使用する方法についての講義 - mongoDB:
ドキュメント指向データベースである mongoDB を使用する方法についての講義
- FeatureTools:
特徴量抽出器である FeatureTools を使用する方法についての講義
- PyCaret:
モデルやパラメータを自動推定する機械学習方式 AutoML を実現したツール PyCaret を使用する方法についての講義
- sktime:
時系列データ分析をするためのツール sktime を使用する方法についての講義
- spaCy:
自然言語処理(テキストデータ処理)を行うツール spaCy を使用する方法についての講義
- D3.js:
Javascript でグラフを描画するツール D3.js を使用する方法についての講義
- Plotly:
Matplotlib よりも多様なグラフを描画できるツール Plotly を使用する方法についての講義
- Tableau:
データの分析・可視化する BI (Business Intelligent) ツール Tableau を使用する方法についての講義
実世界データ処理学
実世界データを扱う上で重要となる観点を分野・事業において主要な役割を果たしている方から学ぶことができます.データ倫理のような社会的必要性の高い講義や,ビジネスにおけるデータ分析の重要性に関する講義など多岐にわたる講義を用意しています.
- データを扱う上での倫理:
久木田 水生(名古屋大学) - 情報処理と法律問題~リクナビ事件を題材に~:
小林 正啓(花水木法律事務所) - データを安全に活用するために:
大須賀 智子(国立情報学研究所) - 実世界データ処理におけるデータセット・タグ付け:
大谷 健登(名古屋大学) - デジタルイノベーション~データ活用がもたらすビジネスの未来~:
石黒 不二代(ネットイヤーグループ(株)) - 超スマート社会のデータサイエンティストを目指して〜オプティマインドのケーススタディ~:
松下 健((株)オプティマンド) - 自ら学ぶ力が伸びる学習法に関する共同研究~「進研ゼミ」の学習履歴データを用いて~:
佐藤 昭宏(ベネッセ教研) - 材料系・生産系のデータ:
宇治原 徹(名古屋大学) - 医療情報の倫理や個人情報保護法の観点:
飯島 祥彦(名古屋大学) - (自治体などの)行政データの扱い:
遠藤 守(名古屋大学) - データと事業 クックパッドの場合:
成田 一生(クックパッド(株)) - ビジネス的観点からのE-commerce企業における機械学習活用:
竹内 伸一(楽天(株)) - 宇宙地球環境研究におけるデータ解析とハイパフォーマンスコンピューティング入門:
三好 由純 梅田 隆行(名古屋大学) - 実世界データ処理学(企業におけるデータ活用のポイント等):
増田 知彰(NTTコミュニケーションズ) - 因果推論:
藤井 慶輔(名古屋大学) - トヨタ自動車におけるデータ解析のポイントと事例:
福島 真太朗(トヨタ自動車株式会社)
ドメイン数理知識
より専門的に学ぶことをができるように,ドメインに関する数理的な講義も多数用意しています.ただデータ分析ができるだけでなく,より深くドメインを理解し,数理的に把握・表現できるようになるための事例を多数用意しています.全24講義用意しており,自信の専門性・興味に応じて選択的に受講できます.
- 知能化車両のための実世界データ循環:
武田 一哉(名古屋大学) - コンテンツ循環を目指した映像の自動再編集:
井手 一郎(名古屋大学) - 自動運転社会のためのシナジックモビリティ:
河口 信夫(名古屋大学) - 制約付き書換え帰納法によるプログラム検証:
西田 直樹(名古屋大学) - 組合せ最適化に対する実践的アプローチ:
柳浦 睦憲(名古屋大学) - 大規模構造化データの圧縮と直接操作:
関 浩之(名古屋大学) - ビッグデータとデータベースシステム:
石川 佳治(名古屋大学) - 3次元画像システム - 入力から表示まで:
藤井 俊彰(名古屋大学) - インテリジェント医療機器の機械学習:
森 健策(名古屋大学) - E-コーチングと共生インタラクション:
間瀬 健二(名古屋大学) - ビルディングスケールのバーチャルリアリティ(VR):現実世界を拡張する別の方法:
長尾 確(名古屋大学) - 個人データ循環のためのMyData:
橋田 浩一(東京大学) - ヒトゲノムにおけるVariants of Unknown Significance (VUS) の予測モデル:
大野 欽司(名古屋大学) - 医学の進歩における病理診断データと解析の重要性:
榎本 篤(名古屋大学) - 頻度のまれな疾患関連ゲノム変異から始まる神経発達障害、自閉症スペクトラム障害、統合失調症における分子病態の解明:
尾崎 紀夫(名古屋大学) - 医科学におけるウェットとドライ:
高橋 隆(名古屋大学) - データ循環のための実世界テキスト -コンピューターによる自然言語理解:
相澤 彰子(国立情報学研究所) - 車の使用に関するデータ収集と予測:
稲垣 伸吉(名古屋大学) - 電動化モビリティとそのスマートグリッドへの影響の概要:
鈴木 達也(名古屋大学) - データ循環に基づく道路環境認識:
出口 大輔(名古屋大学) - 因果関係研究への回帰不連続アプローチ:
安達 貴教(名古屋大学) - ソーシャルCPS:その概念と実証実験で得られた経験:
安達 淳(国立情報学研究所) - 自動運転技術の価値創造:
加藤 真平(東京大学) - 統計的検定における多重比較法について:
古橋 武(名古屋大学) - 分析イメージング法を活用した生物素材の非破壊品質評価:
馬 特(名古屋大学) - テスト理論に基づいたテスト作成・分析手法:
坪田 彩乃(名古屋大学) - オイラーの多面体定理とホモロジー:
若月 駿(名古屋大学)
プロジェクトマネジメント基礎
社会で実践的に活躍するために,プロジェクト管理における基本的な事項,分析結果などの提示方法(可視化、文書化、プレゼンテーション)について学べます.
- WBS(Work Breakdown Structure)を用いた工程管理
- 解析結果の可視化
- 解析結果を文書化する技法
- プレゼンテーション法